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 SOFC cathode materials 

: Main barrier to achieve higher power 
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Singhal and Kendall, High Temperature 

Solid Oxide Fuel Cells, 2003. 
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Sholklapper et al., Electrochem. Solid. St. 10 (2007). 

Solid Oxide Fuel Cells Cathode Materials 
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Dulli et al., Phys. Rev. Lett. 62 (2000). 
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 Sr rich in A-site [1] 

 Formation of (La,Sr)O [2] 
 Formation of (La,Sr)2MnO4 

[3] 

SEM Sr 

Co La 

(La,Sr)CoO3 annealed at 650 C in air 

Fister et al., Appl. Phys. Lett. 93 (2008). 

Cai et al., Chem. Mater. 24 (2012). 

Surface Structure and Chemistry: A-Site Rich? 
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To control cation segregation for enhanced activity & stability, 

driving forces must be quantitatively understood 

Kubicek et al., J. Electrochem. Soc. 158 (2011); Cai et al., Chem. Mater. 24 (2012) 

Surface Chemistry Strongly Affects Surface Activity 
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 Quantitatively assess the key 

driving forces of cation 

segregation on perovskite oxide 

surfaces 

 Determine the chemical 

composition and structure of 

secondary phases on the surface 

upon cation enrichment 

 Assess the effects on 

electrochemical activity 

Objective 



Elastic Electrostatic 

Cation Segregation 

Elastic energy 

minimization 
Electrostatic repulsion 

minimization 

Hypothesis for Cation Segregation in Perovskites 
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XPS 

Surface Chemical State 
 X-ray Photoelectron 
Spectroscopy (XPS) 

Nanoscale Auger 
Electron Spectroscopy  

(n-AES) 

EB 

STM 

Surface Electronic Structure  

Scanning Tunneling 

Microscopy / Spectroscopy 

(STM/STS), in situ 

Mechanisms, Energetics and 

Kinetics of Cation Segregation 

Electronic structure (DFT+U) 
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LaMnO3 or SmMnO3 

To systematically induce elastic energy 

differences, radius of the selected dopant 

cations is varied. 

Host 
Dopant 

Ca2+ Sr2+ Ba2+ 

La3+ 
Δr (Å) -0.02 0.08 0.25 

Δr/r0 (%) -1.5 5.9 18.4 

Sm3+ 
Δr (Å) 0.10 0.20 0.37 

Δr/r0 (%) 8.1 16.1 29.8 

Increasing dopant size relative 

to the host cation 

Control of Elastic Interactions 

8 



LaMnO3 or SmMnO3 

Seven models to represent the variation of 

electrostatic interactions are constructed 

by controlling the distribution of charged 

oxygen- and cation-vacancies. 

 

Increasing attractive interaction 

to the dopant cation to the surface 

Control of Electrostatic Interactions 
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Both Elastic and Electrostatic Drivers are Important 

10 

Han and Yildiz, 

in preparation. 



Elastic Interaction: Dopant Size Mismatch 
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To systematically induce elastic energy differences, radius of 

the selected dopant cations is varied. 

Host 

cation 
Size mismatch 

Dopant 

Ca2+ Sr2+ Ba2+ 

La3+ 
Δr (= rhost – rdopant) (Å) -0.02 0.08 +0. 25 

Δr/r0 (%) -1.5 +5.9 +18.4 

La0.8D0.2MnO3 

SrTiO3 (100) 

~20nm La0.8Ba0.2MnO3      LBM 

La0.8Sr0.2MnO3      LSM 

La0.8Ca0.2MnO3      LCM 

Pulse laser deposition (T = 815 °C in pO2 = 10 mTorr) 
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Annealing Induced Changes 

830 C 

530 C 

RT 

830 C 

530 C 

RT 

Emission angle = 0  Emission angle = 80  

Chemical changes (Sr 3d) 
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Emission 
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Segregation in 
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Secondary phase 
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Segregation in 

perovskites 

Sr/Mn 

Sr/La 



13 

Effects of Size Mismatch on Dopant Segregation 
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Localized Chemical Identification 
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elemental mapping (left) and point 

spectra (right) 
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Effects of Oxygen Pressure on Dopant Segregation 

LBM 

LBM_700_1e-6_.124.sem: MIT CMSE

2012 May 5  20.0 kV  0  FRR

SEM

0.0

122.0

0.200 µm

0
.2

0
0
 µ

m

SEM

LBM_700_.137.sem: MIT CMSE

2012 May 1  20.0 kV  0  FRR

SEM

0.0

157.0

0.200 µm

0
.2

0
0
 µ

m

SEM

1μm 

1μm 

500nm 

500nm 

760 Torr (830 C) 

1x10-6 Torr (850 C) 

760 Torr (830 C) 

1 10-6 Torr (850 C) 

LBM_500_.111.sem: MIT CMSE

2012 May 1  10.0 kV  0  FRR

SEM

0.0

149.0

10 µm

1
0
 µ

m

SEM

1μm 500nm 

1x10-9 Torr (700 C) 1 10-9 Torr (700 C) 

Cation intensity ratio away from the 

surface phases (background data 

was used if no features exist) 
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Effects of Oxygen Pressure on Dopant Segregation 
LSM_700_.122.sem: MIT CMSE
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Effects of Oxygen Pressure on Dopant Segregation 

Annealing in high pO2 

x 

Annealing in low pO2 

x 
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Electronic Properties of Surface Phases 

500nm 

LBM annealed at 830 C in air 

AFM 

200nm 

STM 

Annealing-induced surface phases are insulating 
(Eg,LBM, Eg,LSM ~ 2 eV, Eg,BaO ~4.5 eV, Eg,SrO ~ 5.7 eV) 
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Summary 

Agglomeration 

dopant 

Surface segregation 

A-site 

cations 

surface 

bulk 

Ca Sr Ba 

RT
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MnDopant

MnDopant
o

/

/
830

Segregation = Elastic + Electrostatic 

760 Torr 

1×10-6 Torr 

1×10-9 Torr 

insulating 
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Future Work 

 Surface electronic structures using scanning tunneling 

microscopy / spectroscopy. 

 Electrochemical properties using impedance 

spectroscopy. 
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Angle-Resolved X-ray Photoelectron Spectroscopy 
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Information depth varies with an emission angle 

Photoelectron 

emission 

sample 

Surface 

structures 

Surface 

segregation 

Probe the chemical composition 

with a depth information 
(Escape depth of Sr 3d is ~6nm with θ=0 , 

and ~1nm with θ=80°) 
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HR XPS for dopant peaks 
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HR XPS 

RT (0) 500 (0) 800 (0) 

RT (80) 500 (80) 800 (80) 

To extract more information 

from HR XPS, especially to 

identify the chemical 

composition of surface layer or 

secondary phase. 

 This can be useful to describe 

segregation before forming 

secondary phases on the 

surface 

 Still working on this analysis 

O1s 
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Effects of Vacancy Distribution on Dopant Segregation 

Other thoughts on this difference (high pO2 vs. low pO2) 

 

If there is strong interaction between the oxygen vacancy (+) and 

cation vacancy (-), more oxygen vacancies on the surface in UHV 

would attract more cation vacancies on the surface. Then, it will be 

difficult for cations to diffuse towards the surface, and/or the cation 

vacancies will provide rooms for segregated cations? 

But, we need to know the diffusivity of cations at 500-800C to see they 

are mobile enough 
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Effects of Oxygen Pressure on Dopant Segregation 

1 10-6 Torr 

1 10-9 Torr 

Cation intensity ratio using XPS 

(left) and AES (right) 
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Effects of Vacancy Distribution on Dopant Segregation 

Annealing in high pO2 
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